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Abstract

Declining female fecundity at later age and the increasing tendency for women to delay childbirth have lead to a drastic rise in the

number of women seeking assisted reproductive technology. Many women fail to respond adequately to standard ovarian stimulation

regimens, raising a significant therapeutic challenge. Recently, we have demonstrated that the administration of GH, as an adjunct to

ovarian stimulation, has improved the clinical outcomes by enhancing the oocyte quality. However, the mechanism(s) by which GH

facilitated this improvement is yet to be understood. This study aimed to determine these potential mechanism(s) through the use of

immunofluorescent localisation of GH receptors (GHRs) on the human oocyte and unbiased computer-based quantification to assess and

compare oocyte quality between women of varying ages, with or without GH treatment. This study demonstrates for the first time, the

presence of GHRs on the human oocyte. The oocytes retrieved from older women showed significant decrease in the expression of GHRs

and amount of functional mitochondria when compared with those from younger patients. More interestingly, when older patients were

treated with GH, a significant increase in functional mitochondria was observed in their oocytes. We conclude that GH exerts a direct

mode of action, enabling the improvement of oocyte quality observed in our previous study, via the upregulation of its own receptors and

enhancement of mitochondrial activity. This result, together with recent observations, provides scientific evidence in support of the use

of GH supplementation for the clinical management of poor ovarian response.
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Introduction

Since the development of modern effective forms of
contraception, an ever increasing number of women
are choosing to postpone pregnancy until later life, for
various reasons including, but not limited to, a
dedication to their chosen profession, level of education,
and/or given lifestyle (te Velde & Pearson 2002,
Broekmans et al. 2007). As such, the modern tendency
for women to defer pregnancy has lead to a sharp rise in
the mean female age at first childbirth (Perheentupa &
Huhtaniemi 2009). Unfortunately, by delaying childbirth
beyond the second decade of reproductive life (late 30s),
the probability of successful conception is drastically
reduced, hence increasing both the incidence of age-
related subfertility and the number of advanced repro-
ductive age women (R35 years) seeking fertility
assistance (Broekmans et al. 2007).
Current prevailing concepts of female reproductive

ageing attribute declining female fecundity to the
parallel diminishment in both the quantity and quality
of the primordial follicle reserve and oocytes respec-
tively (te Velde & Pearson 2002, Perheentupa &

Huhtaniemi 2009). Whilst the complete exhaustion of
the ovarian reserve ultimately results in menopause,
diminishing reproductive potential during the pre-
menopausal period is attributed primarily to the
compromised quality of oocytes (Madankumar et al.
2003). However, little is understood regarding the exact
cellular mechanism(s) and cause(s), which facilitate the
decline in oocyte quality.

The successful outcome of IVF is largely dependent
upon adequate patient response to ovarian stimulation,
as it determines both the number and quality of oocytes
available for clinical treatment. Unfortunately,w9–24%
of all IVF cycles undertaken fail to respond to standard
ovarian stimulation regimens, due to poor ovarian
response (POR) to hormonal stimulation (Abir et al.
2008). Currently, the management of POR patients
represents a significant therapeutic challenge (Hazout
et al. 2009, Yovich & Stanger 2010), such that various
alternative forms of clinical intervention have either
been ineffective or lack sufficient scientific evidence
necessary to support clinical application (Ubaldi et al.
2005). Recently, we have demonstrated that the
administration of exogenous growth hormone (GH)
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supplementation, in conjunction with standard ovarian
stimulation regimens, resulted in significantly higher
embryo implantation and clinical pregnancy rates
compared with those not treated with GH (Yovich &
Stanger 2010). These findings are supported by previous
studies demonstrating the beneficial effect of GH in
increasing the response of human ovary to gonado-
trophins in poor-responder patients (Homburg et al.
1988, Volpe et al. 1989, Hazout et al. 2009). The
improvement in clinical outcomes was likely achieved
via an improvement in oocyte developmental compe-
tence, rather than the result of an increased yield of
oocytes or effects on the endometrium as the benefits
continued to express in subsequent frozen embryo
transfer cycles.
At present, very little is known regarding the potential

mechanisms(s) by which GH improves oocyte develop-
mental potential. However, a recent study conducted in
our laboratory has demonstrated that GH may indirectly
achieve this improvement by promoting granulosa cell
responsiveness to gonadotrophin stimulation, reflected
by an increase in the expression of receptors to follicle-
stimulating hormone (FSH) and luteinising hormone (LH)
(Regan et al. 2012). Although it is plausible that GH may
also elicit a direct effect upon the oocyte itself, the
existence of GH receptors (GHRs) upon the human
oocyte retrieved from IVF patients has yet to be
confirmed, and the potential direct mechanism by
which GH improves oocyte quality remains to be shown.
Non-invasive selection of developmentally competent

human oocytes is of particular importance within
modern fertility treatments (Rienzi et al. 2011). Typically,
gross morphological assessment of denuded oocytes
or oocyte–cumulus complex is evaluated using
simple, non-invasive light microscopy in order to
ascertain oocyte quality (Rienzi et al. 2011) and its
developmental potential (Balaban & Urman 2006).
However, the integrity of important intra-cellular orga-
nelles and ultra-structures such as mitochondria and
microtubules cannot be accurately determined through
such gross morphological assessment, hence concerns
have been raised regarding the predictive value of
these parameters (Rienzi et al. 2011). Instead, we have
demonstrated that more detailed, non-invasive
biochemical and/or ultra-structural evaluation is neces-
sary to adequately assess true oocyte developmental
competence (Seet et al. 2013).
Mitochondria are the most abundant organelles within

oocytes, and although oocytes are relatively less
metabolically active, their function is essential for
oocyte/embryo development (Cummins 2004). Sufficient
levels of mitochondrial activity are necessary to facilitate
the high energy-demanding processes of the oocyte,
including spindle formation, chromosomal segregation
and meiotic division, fertilisation and embryonic
division (Cummins 2004, Eichenlaub-Ritter et al.
2011). In fact, the age-dependent decline in oocyte

quality is predominantly due to meiotic non-disjunction
and consequently, potentially fatal aneuploidies
(Broekmans et al. 2007).

The number of mitochondria present in an oocyte may
indicate the energetic status of the oocyte, which has
been the aim for several investigations using different
approaches and markers for estimating their numbers
and/or mass quantity such as cytochrome c oxidase
(Duran et al. 2011, Eichenlaub-Ritter et al. 2011).
However, mitochondria are in a consistent dynamic
turnover because of their short functional life span
(Cummins 2004). At any given time, several mito-
chondria could be visibly counted in an oocyte but not
necessarily are all functional, they remain visible for a
while before they degenerate and disappear. As such, it
is possible that the number of mitochondria in older
women may show no difference when compared with
those found in the oocyte of younger women, but they
may not be fully functional. In order to properly estimate
the developmental potential of the oocyte, both the
functional capacity and structural integrity of mito-
chondria should be investigated.

This study aimed to investigate and determine the
presence of the potential mechanism(s) by which GH
supplementation, in conjunction with standard ovarian
stimulation, improves oocyte developmental compe-
tence. Specifically, this was achieved through the
application of an unbiased immunofluorescent labelling
and computer-based quantification technique to localise
GHRs on the human oocyte and to assess and compare
oocyte quality between women of varying ages, with and
without GH treatment. To ascertain true oocyte develop-
mental potential, fluorescence and immunofluorescence
labelling were used to quantify the mitochondrial
structural integrity and functional viability, in a manner
previously described by Seet et al. (2013). The findings
were then compared against the findings of a traditional,
non-invasive form of oocyte quality assessment for
evaluating the validity of these prognostic tests.

Materials and methods

Patient recruitment and data collection

Cumulus–oocyte complexes (COCs) were collected from
women aged between 26 and 46 years (mean 30 years),
undergoing fertility treatments at PIVET Medical Centre. The
cause(s) of infertility were various, being female or male
derived, a combination of both or unexplained. All patients
underwent routine cycle stimulation using a gonadotrophin-
releasing hormone (GNRH) antagonist (Orgalutran, MSD,
North Ryde, NSW, Australia) plus recombinant FSH (Puregon,
MSD) regimen, at customised dosages, as described by the
PIVET Clinical Algorithm (Yovich et al. 2012), which effectively
avoids ovarian hyperstimulation syndrome. Women deemed
susceptible to POR were given the option of receiving
exogenous GH supplementation in conjunction with
their prescribed stimulation regimen. Identification of
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‘poor-responder’ cases was based on the patient’s fulfilment of
one or more of the following ‘Bologna’ criteria (Ferraretti et al.
2011): i) an antral follicle count of %5; ii) a circulating anti-
Mullerian hormone level of %5 pmol/l; iii) the generation of
%3 mature oocytes at the time of collection, despite receiving
the maximal allowed gonadotrophin dosage (i.e. R450 IU/
day); and iv) repeated failure to achieve clinical pregnancy
following the transfer of fresh and/or frozen embryos, where
poor oocyte and/or embryo quality has been noted.
GH supplementation was performed using either Saizen

injection, an average of 2.5 IU/day for 24 days (Merck Serono)
or SciTropin A pen at 1 IU/day for 4–6 weeks (SciGen, Belrose,
NSW, Australia). To avoid any possibility of bias, the selection
of patients who did or did not choose to undertake GH
administration, the study was designed as a sequential
crossover (Yovich & Stanger 2010), where patients identified
as poor responders were given the option of taking GH or await
the outcome of the treatment cycle then using GH on the next
cycle if the first failed.
Ovulation was triggered by the timed administration of two

injections of Ovidrel (each 250 mg/0.5 ml equating to
w6500 IU dosages of recombinant human CG; Ovidrel,
Merck Serono). Trans-vaginal oocyte recovery was undertaken
36 h thereafter.

Human oocytes

All retrieved COCs were graded by an embryologist, as initially
described (Marrs et al. 1984) with modifications (Yovich &
Grudzinskas 1990) for the initial selection process of oocytes
for ICSI. In brief, grading was based upon the extent of cumulus
expansion within the COC. The COCs of the highest grade
exhibited a high level of cumulus expansion denoted by widely
dispersed luteinised cumulus cells in a large loose mass. The
coronal cells are also somewhat dispersed in a radiant
‘sunburst’ pattern, enabling reasonable visualisation of the
oocyte. Lower grade COCs display tighter, smaller and
undispersed cumulus masses with a dense circular coronal
coat containing a dark, essentially non-visible oocyte. All COC
grades were included into this study.
The oocytes were denuded using 1500 IU of hyaluronidase

(Hyalase, Sanofi Aventis, Macquarie Park, NSW, Australia),
w1–2 h after collection, and stored in a fertilisation medium at
37 8C with 5% CO2, 5% O2 and 90% N2 until ICSI. All MII
oocytes were selected for ICSI, while those identified as
immature (MI or germinal vesicle (GV) oocytes) were kept in
incubator for 4–6 h. Some MI oocytes matured in vitro to MII
oocytes and could be used as a back-up reserve for clinical
purpose. Once fertilisation and formation of good embryos
were achieved, the remaining MI and/or MII oocytes super-
fluous to clinical need were donated to the study. In total, 149
women aged between 27 and 46 years gave written informed
consent to donate their unused oocytes, based on ethical
approval from Curtin University Human Research Ethics
Committee. The oocytes were allocated into groups according
to patients’ age and classified according to whether GH
supplementation had been given or not. They were randomly
selected for either GHR immunofluorescence localisation or
the assessment of mitochondrial integrity and function.

Immunofluorescent labelling

The following procedures were performed on fresh oocytes in
a progressive way, while the oocytes were collected. At the
end of the study period, all collected data were subjected to
statistical analysis. An indirect immunofluorescence staining
was used, as described previously (Almahbobi & Hall 1993,
Seet et al. 2013), to localise GHR. In brief, oocytes were fixed
in 4% paraformaldehyde (PFA) and incubated overnight in
4 mg/ml goat anti-human GHR antibody (R&D Systems,
Minneapolis, MN, USA) at 4 8C. After washing in PBS, the
oocytes were incubated in 4 mg/ml donkey anti-goat IgG
antibody conjugated to Alexa 488 (Sigma–Aldrich) for 45 min
at room temperature.
For mitochondrial assessment, oocytes were pre-labelled

using 100 nM MitoTracker Red CMX (Molecular Probes,
Eugene, OR, USA) in PBS for 30 min at 37 8C with 5% CO2

(Stojkovic et al. 2001). This fluorescent marker with an
excitation wavelength of 594 nm labels functional mito-
chondria in live cells, dependent upon membrane potential
for the evaluation of mitochondrial viability and distribution.
After washing in PBS, oocytes were fixed in 4% PFA before
permeabilisation, using 0.02% Triton X-100. Subsequently, the
samples were incubated overnight at 4 8C in 2 mg/ml mouse
anti-cytochrome c oxidase MAB (Santa Cruz Biotechnology)
followed by incubation in 4 mg/ml goat anti-mouse IgG
secondary antibody (Molecular Probes) conjugated to Alexa
488, for 45 min at room temperature. The samples were
mounted using an anti-fade mounting medium, containing
4 0,6 0-diamidino-2-phylindole (Molecular Probes). For the
negative controls of immunofluorescent labelling, oocytes
were incubated in pre-immune goat or mouse serum diluted
at 1:10 (v:v) in PBS instead of the corresponding primary
antibodies.

Confocal microscopy and quantification

The oocytes were examined using an inverted confocal
microscope (AR1C/A1C; Nikon Corporation, Tokyo, Japan),
equipped with a 40! objective and 488 and 594 nm filters.
Methods for image capture and 3D signal quantification were
employed as described previously (Seet et al. 2012) with slight
modifications. Briefly, equatorial serial sections were captured
throughout the entire length of the oocyte, at 2 mm intervals.
The fluorescent emission intensity of the reconstructed 3D
image, resulting from a stacking of these serial sections, was
quantified using Volocity 3D image analysis software, version
6.2 (Perkin Elmer, Waltham, MA, USA). In GHR-labelled
oocytes, signal emission was measured in four 5 mm3 regions
around the cell membrane in three equatorial serial sections
located at the centre of the oocyte, where the nucleus was
visible. This method of measurement was applied consistently
to all GHR-labelled oocytes. The mean value of the emitted
signals from these four points was used to reflect the level of
GHR expression for a given oocyte. In oocytes labelled for
MitoTracker and cytochrome c oxidase, total fluorescent
emission was measured in all 2 mm equatorial serial sections
throughout the entire oocyte. All above procedures were
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performed blindly without reference to the patient group from
which the oocytes were derived.

Statistical analyses

Oocyte and COC morphological grade distribution was
analysed with JMP version 10 (SAS Institute, Cary, NC, USA)
statistical analysis software, using one-way ANOVA non-
parametric Wilcoxin t-tests, with statistical significances set
at P!0.05. Immunofluorescence results were analysed using
Prism version 5 (GraphPad Software, La Jolla, CA, USA)
statistical analysis software, one-way ANOVA and Student’s
t-tests with statistical significances set at P!0.05. One-way
ANOVA tests were used to compare all groups, whilst
Student’s t-tests were used to analyse differences between
individual groups.

Results

Assessment of COC

The distribution of COC morphological grades, accor-
ding to the different patient groups, can be seen in Fig. 1a
and b. In both age groups, normo-responder patients
produced a significantly greater number of good quality
oocytes (grade 2.5; P!0.05) compared with the age-
matched poor-responder counterparts. Interestingly,
poor-responder women treated with GH produced
more grade 2.5 good quality oocytes compared with
those not treated with GH. However, the number of
good quality oocytes recovered from poor-responder
GH-treated women was still considerably lower than
those in normo-responder patients and consequently the
improvement trend was not statistically significant in
either age group (Fig. 1a and b).
In young patients only, oocytes of other lesser quality

grades showed a trend of difference in their distribution
according to patient response and treatment, particularly
observed in grades 1.5 and 2. The number of grade 1.5
oocytes significantly increased in untreated poor-
responder patients compared with age-matched
normo-responders, but then reduced after GH treatment
(Fig. 1a). Grade 2 good quality oocytes showed
significant increase in number in GH-treated poor-
responder patients when compared with their age-
matched untreated counterparts (Fig. 1a). No such
correlation has ever been observed in older patients
(Fig. 1b).

Immunofluorescence localisation and
quantification of GHR

Positive immunofluorescent labelling (Fig. 2a) of GHR
was detected on the surface of human oocytes (Fig. 2c).
In negative controls, no fluorescent signal was detected
(Fig. 2b). 3D quantitative analysis of the level of GHR
expression, as reflected by fluorescent signal intensity,
demonstrated a considerable disparity in receptor

expression in oocyte recovered from women of varying
ages (Fig. 2d). The oocytes recovered from younger
normo-responder women (!35 years of age) exhibited a
significantly higher level of GHR expression (P!0.04)
compared with those recovered from older normo-
responder women of R35 years (Fig. 2d).

Assessment of mitochondrial integrity and viability
using fluorescent microscopy

Confocal microscopic observation revealed a homo-
genous similar distribution of MitoTracker Red (Fig. 3b)
and cytochrome c oxidase (Fig. 3c) fluorescent labelling
throughout the cytoplasm. Dual visualisation of both
fluorescent labels, using image super-imposition,
demonstrated perfect co-localisation of the two labelling
(Fig. 3d). In negative controls, no fluorescent signal
could be detected (data not shown), as in Fig. 1b.
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Figure 1 Distribution of COC morphological grade, according to
patient age and treatment. (a) COC grade distribution in older patients
R35 years. (b) COC grade distribution in younger patients !35 years.
Grading was based upon extent of cumulus expansion within the COC.
NR, normo-responder; PR, poor-responder; GHK, untreated; GHC,
treated; n, number of oocytes.
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3D quantification of mitochondria integrity and
viability in different patient groups

3D quantification of MitoTracker Red labelling demon-
strated a significant difference in the amount of viable
mitochondria between each of the patient groups
(Fig. 4a). The oocytes recovered from younger normo-
responder women had a significantly (P!0.001) larger
amount of functional mitochondria, than those taken
from both older normo- and poor-responder women.
More interestingly, oocytes recovered from the older
poor-responder GH-treated women had a significantly
(P!0.005) higher level of viable mitochondria,
compared with their age-matched counterparts,
untreated with GH. Although the level of functional

mitochondria in poor-responder patients treated with
GH was considerably lower than that observed in
younger normo-responder patients, it was not statisti-
cally significant probably due to small number of patient
(nZ3; one treated with Saizen, two with SciTropin A).
The total number of mitochondria, as reflected by the
extent of cytochrome c oxidase labelling, was com-
parable between each of the patient groups and was not
statistically significant (Fig. 4b).

Discussion

This study provides further understanding of the role of
GH in female reproduction, supporting the clinical
administration of exogenous GH for the management
of POR. This was achieved through the application of
fluorescence and immunofluorescence labelling and
computer-based unbiased 3D quantification, as we
have previously reported (Seet et al. 2013, Al-Samerria
& Almahbobi 2014).

A growing body of evidence, in both human and
animal models, suggests that GH is an important
regulator of ovarian steroidogenesis (Nakamura et al.
2012), follicular development (Bachelot et al. 2002) and
oocyte maturation (Bevers & Izadyar 2002). In clinical
application, we have recently demonstrated that GH
supplementation together with gonadotropin-induced
ovarian stimulation has lead to significant improvement
in oocyte quality (Yovich & Stanger 2010). However, it is
not yet clear howGH exerts its action on human oocytes.
In another study conducted in our laboratory, we have
demonstrated that GH administration to IVF patients
significantly increases the expression of both FSH and
LH receptors on granulosa cells, suggesting an indirect
mode of action on human oocytes via granulosa cells
(Regan et al. 2012).

In this study, we report for the first time the presence of
immunoreactive cell membrane-bound GHR on human
oocytes retrieved from IVF patients, suggesting that GH
may elicit a direct effect upon the oocyte itself. This may
appear in contrast with previous reports showing the
absence of GHR mRNA in human (Sharara & Nieman
1994) and mouse (Terada et al. 1996) oocytes. However,
GHR protein was expressed in bovine (Bevers & Izadyar
2002) and rat (Zhao et al. 2002) oocytes, even when the
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Figure 3 Fluorescent and immunofluorescent labelling of mitochondria and their distribution. (a, b, c and d) Microscopic images of the same oocyte.
(a) Light microscopy. (b) Viable mitochondria labelled by MitoTracker Red. (c) Total amount of mitochondria immunolabelled by cytochrome
c oxidase. (d) Dual-labelled image of MitoTracker Red and cytochrome c oxidase demonstrating perfect co-localisation. CP, cytoplasm;
N, nuclear material; PB, polar body.
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Figure 2 Localisation and quantification of GHR on human oocytes.
(a) Light microscopic image of an immature oocyte showing the four
regions, denoted by the arrowheads, where quantification of GHR was
performed. (b) Negative control exhibiting no detectable immuno-
labelling. (c) Immunofluorescent labelling of an oocyte demonstrating
cell membrane-bound GHR expression and distribution. (d) Quantifi-
cation of GHR expression in fresh oocytes taken from women younger
and older than 35 years. Data shown is the mean valueGS.E.M.
A significant difference was found, as indicated by *(P!0.05).
CP, cytoplasm; GHK, GH untreated patients; GHC, GH treated
patients; N, nuclear material; n, number of oocytes; *P!0.05.
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GHR mRNA was reported to be absent in rat oocytes
(Zhao et al. 2002). Nonetheless, in situ expression of
GHR protein and mRNAwas detected in human oocytes,
although the signals were found in the cytoplasm (Abir
et al. 2008). Taken into consideration such a confusing
discrepancy in the literature, it appears that GH action
on oocyte may be mediated by species-specific
pathways. The presence of GHR protein in rat (Zhao
et al. 2002) and human (Abir et al. 2008, present study),
while the GHR mRNAwas not detected in these oocytes
(Sharara &Nieman 1994, Zhao et al. 2002, respectively),
requires further investigation.
Quantitative analysis revealed an age-dependent

decline in GHRs expressed in the oocyte, which to
the best of our knowledge has not been reported
previously. These results support our previous report,

confirming an age-dependent decline in GHR expression
within the granulosa cells of human Graafian follicles
(Regan et al. 2012). In addition, granulosa cells retrieved
from women who received GH supplementation
expressed a significantly higher level of GHR protein
than those from age-matched counterparts (Regan et al.
2012) and GH mRNA expression in the ovaries of
hypophysectomised rat was significantly increased after
treatment with GH (Carlsson et al. 1993), suggesting that
GH upregulates its own receptor expression. We believe
that this auto upregulatory action of GH may also be
present in the oocyte, which requires further investigation.

This study also reports that reproductive ageing leads
to a decrease in the amount of functionally viable
mitochondria in human oocytes, thereby contributing
to the age-related decay in oocyte developmental
competence. As mitochondrial function is essential for
both oocyte and embryonic development (Cummins
2004, Eichenlaub-Ritter et al. 2011), it appears that
the significantly reduced functional mitochondria in the
oocytes recovered from women of advanced reproduc-
tive age underlines the impairment of oocyte develop-
mental competence (Madankumar et al. 2003) by
bioenergetic deficiencies, resulting in chromosomal
segregation disorders (Schon et al. 2000), failed matu-
ration and fertilisation (Reynier et al. 2001), and arrested
cellular development (Van Blerkom 2011). However, our
observation contrasts with a previous study (Duran et al.
2011), which may be due to a difference in the
mitochondrial assessment technique used.

Most interestingly, the current study demonstrated that
the administration of GH, as an adjunct to standard
ovarian stimulation, significantly increased oocyte
mitochondrial function, based on MitoTracker Red
labelling. This is similar to a recent report that acute
GH action promotes mitochondrial oxidative capacity
within skeletal muscle cells (Short et al. 2008). We also
found that GH did not promote the formation and/or
growth of mitochondria contained within the oocyte,
as evidenced by the level of cytochrome c oxidase
labelling. Instead, it has been suggested that GH action
may activate various proteins in the b-oxidation or tri-
carboxylic acid cycles, or other components of the
mitochondrial fuel delivery and oxidative machinery,
thereby enhancing the capacity of oxidative ATP
generation (Short et al. 2008). However, the exact
mechanism through which GH action regulates oocyte
mitochondrial function remains to be elucidated, along
with considerations related with the GH dosage; in this
study being either 1 IU or 2.5 IU daily. Nevertheless, we
can thus confirm that the administration of exogenous
GH supplements, in conjunction with standard ovarian
stimulation regimens, does indeed improve the quality of
human oocytes, as demonstrated previously (Yovich &
Stanger 2010), via a potential enhancement in mito-
chondrial functionality. With respect to older women,
improvements in pregnancy rates have been clearly
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Figure 4 Quantification of immunofluorescent labelling of mito-
chondria in oocytes taken from women younger and older than
35 years, with and without GH. (a) Assessment of mitochondrial
viability based on MitoTracker Red fluorescent labelling.
(b) Assessment of mitochondrial membrane integrity, based on
cytochrome c oxidase immunolabelling. Data shown is mean
valueGS.E.M. Significant differences were found, as indicated by
asterisks, using t-tests. n, number of oocytes; GHK, GH untreated
patients; GHC, GH treated patients. **P!0.005 and ***P!0.001.
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demonstrated using 8 IU daily for a short interval; from
day 7 for 6–8 days to the day after Trigger (Tesarik et al.
2005) along with our studies where the Saizen regimen
produced comparable improvements (Yovich & Stanger
2010). The SciTropin A regimen has also shown
equivalent clinical benefits in other study (JL Yovich
and J Stanger, unpublished observations).
Our results demonstrate that reduced numbers of good

quality oocytes, reflected by high-grade COCs, can be
used as a marker for reproductive ageing. One of the
essential precursory steps before ovulation is the dis-
sociation of the cumulus cells surrounding the oocyte,
indicated by the COC grades 2/2.5. More interestingly,
COCgradingdid appear to showageneral improvement in
the quality of oocytes retrieved from poor-responder
women treated with GH, compared with their age-
matched poor-responder counterparts. This outcome can
be explained by the presence ofGHRonhuman granulosa
cells (Sharara&Nieman1994) and the significant increase
in the levels of FSHandLHreceptorsobserved ingranulosa
cells of human preovulatory follicles after GH treatment
(Regan et al. 2012). Nonetheless, we acknowledge that
multiple studies have demonstrated that there is no
correlation between COC morphology and fertilisation,
embryo cleavage and clinical pregnancy rates (Rattana-
chaiyanont et al. 1999, Rienzi et al. 2011).
In conclusion, this study demonstrates for the first

time the presence of cell membrane-bound GHR on
the human oocyte collected from IVF patients, thus
enabling a potential direct mode of action by which
GH may improve oocyte developmental competence in
patients with POR. The action of GH is mediated via the
promotion of GHR expression and functional viability
rather than the numbers of mitochondria. However, the
exact mechanism(s) by which GH action improves
mitochondrial viability in the oocytes remains to be
investigated. Treatment with GH also resulted in
a significant shift in favour of good quality grades of
the overall COC. We conclude that diminished GHR
expression and mitochondrial activity may be the
significant contributing factors to the decline in oocyte
developmental potential associated with reproductive
ageing. These results, in conjunction with recent
observations (Regan et al. 2012), provide further scien-
tific evidence in support of the use of exogenous GH
supplementation for the clinical management of POR.
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